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SHORT COMMUNICATIONS

A dense non-crystallographic packing of equal spheres. By A. L. Mackay, Birkbeck College Crystallo-
graphic Laboratory, 21, Torrington Square, London, W. C. 1. England

(Received 26 February 1962 and in revised form 13 April 1962)

In a cubic close-packed (c.c.p.) assembly of equal spheres
each sphere is surrounded by its first coordination
polyhedron which consists of 12 spheres at the vertices
of a cuboctahedron. A second layer of spheres packed
over the first layer is found to require 42 spheres and
in general the nth layer consists of (10n?+2) spheres.

Fig. 1. Stereogram showing the transformation of a cub-
octahedron to a regular icosahedron. The square faces (M)
become rhombs and split each into two equilateral tri-
angles (@). The triangular faces (A) remain unchanged.
The upper hemisphere only is shown but the remaining
faces can be generated by inversion in the centre.

Fig. 2. Ilustration of the process by which a cuboctahedron
of 12 rigid rods, freely jointed at their ends, (thin lines)
can be moved by rotations of its triangular faces about their
normals to give a regular icosahedron (thick lines and dotted
lines). In the course of the movement each joint moves
in towards the centre.

R. Buckminster Fuller (private communication, 1962)
has pointed out that a cuboctahedron (a ‘vector equilib-
rium’ in his notation), outlined by rigid rods jointed
at the 12 vertices, can be distorted into a regular icosa-
hedron (and further into an octahedron) the distances
from the vertices to the centre contracting uniformly
by 5%. Each of the square faces splits into two equi-
lateral triangles. This process is shown stereographically
in Fig.1 and orthographically in Fig. 2. The same
transformation can be performed with a cuboctahedron
of 12 spheres, either surrounding & cavity or surrounding
a thirteenth sphere; in the latter case no radial con-
traction takes place.

The coordination polyhedron about each sphere in a
hexagonal close-packed (h.c.p.) array can be referred to
as a twinned cuboctahedron (T'CO). It is obtained by
halving a cuboctahedron with a plane parallel to a
triangular face and rejoining the halves after a rotation
of 60°. If the two triangular faces of a T'CO perpendicular
to the triad axis are rotated in their own planes in opposite
senses about this triad axis by 60° relative to each other
a regular icosahedron is also obtained.

Suppose an icosahedron of 12 spheres about a central
sphere is surrounded by a second icosahedral shell

Fig. 3. The icosahedral packing of equal spheres. The third
layer (n=3) is shown. On each triangular face the layers
of spheres succeed each other in cubic close-packing
sequence. Each sphere (not on an edge or vertex) touches
only 6 neighbours, 3 above and 3 below and is separated
by a distance of 5%, of its radius from its 6 neighbours in
the plane of the face of the icosahedron. The whole assembly
of spheres can be distorted by the movement described in
Figs. 1 and 2 to cubic close packing in the form of a cub-
octahedron.
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exactly twice the size of the first. This shell will contain
42 spheres and will lie over the first so that spheres will
be in contact along the five-fold axes. As the vertex-
centre-vertex angle in an icosahedron is approximately
63° 26" the spheres will not be close-packed in the faces
of the icosahedron but will be spaced out at intervals of
1-05146 times their diameters. Further layers can be
added in the same fashion there being (10n2 + 2) spheres
in the nth shell as for the cuboctahedron (Fig. 3). The
whole assembly can be transformed to cubic close-
packing from this icosahedral shell packing (i.s.p.) by
the same rotation mechanism as that which trans-
forms the icosahedron to the cuboctahedron and vice
versa. The packing density of the i.s.p. must therefore
be close to that of the c.c.p. (0-74048) and, in view of the
non-crystallographic nature of the i.s.p. packing, it is
of interest to calculate it.
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Fig. 4. The distorted tetrahedron, 20 of which make up an
icosahedron. The vertex 0 is at its centre.

The unit which occurs repeatedly in the structure is
a distorted tetrahedron which is one twentieth of an
icosahedron (Fig. 4). The three edges meeting at the
icosahedron centre are of unit length and the other three
are extended to 1:05146. If a unit sphere is placed at each
vertex the fraction of the distorted tetrahedron filled is
0-72585 (as compared with 0-7797 for a regular tetrahe-
dron). The hope of attaining a packing density of 0-74048
with such units (interspersed with octahedral interstices
which are still more open) is therefore vain.

In is.p. there are three kinds of positions; spheres
may lie on vertices, on edges or in the faces of the icosa-
hedral shells. In the nth shell there are 12 spheres of the
first kind, 30(n — 1) of the second kind and 10(n% — 3n +2)
of the third. All spheres are 12 coordinated, those at
vertices in pentagonal prisms terminated by pyramids
(pentagonal pyramidal prisms), those on edges in TCO
and those on faces in cuboctahedra. These figures are not
exactly regular. From the central sphere outwards the
ratio of the numbers of octahedral to tetrahedral cavities
increases from 0 towards 1/2. To count the number of
spheres in an icosahedron of a given size the spheres
in its surface must be divided between the inside and the
outside. Using a simple counting system those at the
vertices might be counted as 5/20 inside, those on edges
as 2/5 inside and those on faces as 1/2 inside, but if the
actual solid angles are calculated accurately, the cor-
responding correct values are 0-20965, 0-38386 and 1/2
respectively. Thus an assembly of n icosahedral shells
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about a central sphere contains (10/3n% +5n% +11/3n + 1)
spheres of which Cp,=10/3n%+0-15183n are within the
icosahedron having a vertex-to-centre distance of n.
The packing densities of spheres in assemblies of in-
creasing size are given in Table 1. The packing density
P, is given by Pp=5C,/(6 xn®x2-53615)=0-68818 +
0-03767n72. The densities have also been calculated for
assemblies with the central cavity empty and these,
of course, tend to the same limit but more slowly,
there being a term in n-1.

Table 1. The packing densities of icosahedral packings with
increasing numbers of shells

P, is the density with a central sphere and
P,” without such a sphere

Pp=Cp/n®x6x 253615
Py’ =(Cn—1)[(n—0-04894)3 x 6 x 2-53615.

Number of
Shell spheres Contents Py

number in shell Chr (density) Py’

0 1 — — —
1 12 3-5158 0-72585 0-60378
2 42 27.032 0-69760 0-72362
3 92 90-547 0-69237 0-71935
4 162 214-063 0-69053 0-71317
5 252 417-579 0-68969 0-70864
6 362 721-095 0-68923 0-70539
7 492 1144-611 0-68895 0-70299
8 642 1708-126 0-68877 0-70116
9 812 2431-642 0-68865 0-69971
10 1002 3335-158 0-68856 0-69856
[es) — — 0-68818 0-68818

It will be seen from Table 1 that the density of i.s.p.
tends to a value of 0-68818 which is higher than that
for body-centred cubic packing (0-68017) but lower than
that for c.c.p. (0-74048) or body-centred tetragonal
packing (0-69813) (International Tables 1I, p. 343). The
limiting density can be found directly as follows: for
large values of n the significance of edges and vertices
will be small and the spheres in c.p. layers parallel to
the faces will preponderate. These layers are dilated by
a factor of d =1-05146 in the planes of the faces which
enlarges the interstices. This enables adjacent layers to
fit more closely together, the interplanar spacing being
reduced by (3 —d?)¥/22-¥/2. This leads to a multiplier of
0:92937 which must be applied to the c.c.p. density of
0-74048 to give the resulting density of 0-68818 as
before.

What has been described is an assembly of spheres
which has the symmetry of the icosahedral point group.
It has a unique centre which could be located from any
point in the assembly by following a suitable algorithm.
The assembly is not a lattice (although it has lattice-like
properties) as the spheres do not all have identical
environments, but coordinates could be given for every
sphere by a general rule. At large distances from the
centre the assembly approximates to a c.c.p. structure
uniaxially dilated in directions in a (111) plane which
has undergone twinning by reflexion on the other {111}
planes which are no longer perpendicular to three-fold
axes.

The possibility of the natural occurrence of icosahedral
shell packing might be considered but there are several
reasons which make it unlikely that large numbers of
atoms might be found arranged in this way:
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(@) The density is less than that of c.c.p. and the
possibility of a transition to the latter structure is thus
likely as the simplicity of the transition mechanism has
been demonstrated above. Each sphere (in a face) makes
only 6 contacts with the 12 neighbours in its first co-
ordination sphere and the spread of a displacement is
facilitated.

(b) As n increases the ratio of pentagonal pyramidal
prism to cuboctahedron coordination decreases. The
chemical properties of the assembly would thus also
have to change with n.

(¢) The layers parallel to icosahedron faces are in a
cubic stacking sequence. The energy for hexagonally
stacked additions might be almost identical and any
such stacking fault would prevent the icosahedral packing
from continuing. It is possible that the inclusion of a
small atom with a decided preference for icosahedral
coordination might stabilize a nucleus from which a
normally cubic material might grow.

J.D.Bernal (private communication, 1960) has pointed
to the existence of a class of hierarchic structures, in-
definitely extended in three dimensions, which are non-
lattice packings. The unit of packing is the arrangement
of 13 spheres as an icosahedron making a quasi-spherical
unit, 13 of which are packed together to make a quasi-
sphere of the next order. Tetrahedral units are used to
pack the interstices and as all smaller units are available
for packing the interstices between larger units it is
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difficult to give simple rules for this packing. However,
there is a clear relationship between the early stages of
such a hierarchy and the packing described above.
Counting the central sphere as the zeroth layer, the
first three layers of Bernal’s structure are the same as
in the i.s.p. described above. Looking at the packing of
the layers parallel to the faces of the core icosahedron
the stacking sequence is ABCA (that is, c.c.p.). If the
fourth layer were B as in i.s.p. then the coordination
about the spheres on the five-fold axes in the layer below
(third layer) would be pentagonal pyramidal prisms,
but if the fourth layer were C (stacking fault in hexagonal
sequence) and spheres were also placed on the five-fold
axis as before then 12 icosahedra (each of 13 spheres)
would appear round the first icosahedron with a tetra-
hedron of 4 spheres filling each cavity between 4 icosa-
hedra. The resulting solid of 279 spheres is thus the
second-order icosahedral unit described by Bernal. The
outside shell is not close packed (i.s.p. would have 309
spheres instead of 279) and, on attempting to pack these
large units together, description of the exact position of
each atom becomes very difficult. It is improbable that
the density can be kept up even to the value of 0-68818.

The author wishes to acknowledge many stimulating
discussions with Dr Aaron Klug in which suggestions by
Prof. R.Buckminster Fuller and Prof. J.D. Bernal
were developed.
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Crystal data for seven 5x-pregnane ‘ol-ones’ have been
determined from goniostat-collected reciprocal lattice
measurements using Cu K« radiation. Space groups
were deduced from systematic absences and the fact
that these compounds are optically active.

The number of molecules per unit cell was calculated
in the usual way using floatation density measurements,

assuming no solvent of crystallization. That solvent of
crystallization (probably alcohol) is sometimes present
in crystals of 5«-pregnane compounds, however, is
indicated by the discrepancies between the calculated
and measured densities.

The crystal data obtained are given in Table 1.

Table 1. Crystal data

1. 2. 3. 4. 5. 6. 7.
Formula Ca1H3404 CorHg,04 CpyHg,0,4 CayHgoO;5 Co H3205 CpyH;3,04 Co1Hy,O5
Molecular wt. 318-48 332-5 332-5 362-45 364-47 366-48 366-48
(g.cm.™3, meas.) 1-100 1-208 1-171 1-185 1-154 1-205 1-198
(g.cm.™3, cale.) 1-061 1-206 1-173 0-991 1-041 1-278 1-214
Z 4 4 4 2 4 4 8
Space group P2y P2122 P2, P2, P21 .13212121 P212121
a (A)* 13:485 10-667 17-546 16-525 11-545 12:539 14-061
b (A)* 12-385 23-447 7-502 7-504 25-523 12-830 23-468
c (A)* 12-114 7-320 14637 9-820 8-447 11-686 11-995
B 99-88° _ 102-63° 94-50° 110-96° — —
V (A3) 1993 1831 1880 1214 2324 1880 3958
Solvent ethanol ethanol ethanol ethanol ethanol ethanol toluene

JNemkpom

5x—pregnane—3f—ol—20—one
5x—pregnane—11x—ol—3, 20—dione
5x—pregnane—3—ol—11, 20—dione
5x—pregnane—17«, 21—diol—3, 11, 20—trione
5x—pregnane—3f, 17x, 21—triol—11, 20—dione
5x—pregnane—3«, 118, 17x, 21—tetrol—20—one
5x—pregnane—3f, 118, 17x, 21—tetrol—20—one

* +0-004 A.



